A
Course in Metallurgy, Fabio Miani, miani@uniud.it Long Syllabus October 2014
A Course in Metallurgy, Fabio Miani, miani@uniud.it Long Syllabus October 2014
Course description :
This Course on Metallurgy is basically
a compromise between the good old school of teaching Metallurgy and new
available (free for up to three components!)
software Pandat Software (http://www.computherm.com/
last release October 2014) for phase diagram calculations.
Course objectives
The
student will be able to have a deeper
understanding of the subject by learning to use a Calphad based software,
Pandat. Understanding of the subject
will be obtained also by using other
general purpose software like Matlab or Maple) and by solving some the problems
the textbook proposes.
Course organization
There will be less powerpoint slides projection
as generally students would expect. Learning will be based mainly on solving specific issues, and
generalized/categorized afterwards.
Materials
It is necessary to have a computer (Windows
based or otherwise installed by virtualization) to install Pandat.
Textbook is: Modern Physical
Metallurgy, 8th edition, by Smallman and Ngan, Wiley.
Additional information on Mechanical
Metallurgy could be obtained by Dieter, Mechanical Metallurgy
Digital versions of these textbooks are
available at: http://www.gotrawama.eu/metallurgia/
Prerequisites and co-requisites
The student should already possess some elementary notions of materials science and mechanical behaviour
of metals and, possibly, metallurgy. In the case of a serious lack of
this information expecially for the mechanical behaviour of metals, he/she
should consider the materials in the first parts of the above mentioned Dieter
textbook.
Course
requirements
The student will provide in due times assignements ( by email to aigrullatem@gmail.com )related to the use of Pandat and solutions
to selected problems during the course. Partecipation is strongly recommended.
Final exam is needed in case of uncorrect or untimely delivery of assignments
and problems. A specific final project
will be proposed during the course.
Evaluation and grading policy
The final grade student will be based mainly ( 80%- even 90 %)
on the involvement that the student has demonstrated by working out assignements
and problems during the course. In case some recovery is needed from a mark
considered low by the student, final project work will be considered by professor up to
20%.
Course policies and
expectations
As laptop use is necessary,
an intelligent and respectful use of contemporary devices is welcome.
Course calendar
Will
be communicated ( by email) and published at www.gotrawama.eu/metallurgia/
Advice
Readings ( and suggested links ) should
be approached briefly before classroom. Emphasis in not on memorization, but on
the ability to solve (close to real world) problems
First week
STEP 0 Purpose and aim of the course
Lesson 1: Overview of the Course - Learning needs discussion and evaluation.
Historical, Economic, and Social Perspectives of the metal related activities.
Review
of Selected Global Mineral Industries in 2011 and an Outlook to 2017
http://www.gotrawama.eu/metallurgia/globalmineralindustries.htm
Metal
prices in the United States through 2010
http://www.gotrawama.eu/metallurgia/metal%20prices
Lesson 2: Metals and
materials. What is a metal in a elementary perspective.
Mineral Facilities of Europe
http://pubs.usgs.gov/of/2010/1257/
Readings: Chapter 1: Process Metallurgy�An Argosy Through Time
http://web.a.ebscohost.com/ehost/ebookviewer/ebook/bmxlYmtfXzQ4NTE4MV9fQU41?sid=85dc640b-a9f0-4446-9329-ccdb298881be@sessionmgr4001&vid=0&format=EB&lpid=lp_15&rid=0
Metal extraction procedures
from an elementary perspective.
Readings: Chapter 1.1: Introduction to Metallurgical
Processing
http://web.a.ebscohost.com/ehost/ebookviewer/ebook/bmxlYmtfXzQ4NTE4MV9fQU41?sid=85dc640b-a9f0-4446-9329-ccdb298881be@sessionmgr4001&vid=0&format=EB&lpid=lp_15&rid=0#
Metal oxydes and metal
recycling: a way to a greener production.
Lesson 3: Pandat software
and metallurgical thermochemistry
Using Pandat Basics: http://www.computherm.com/
Use of Pandat for the Li.Si
phase diagram: paper from Maria Helena Braga, Oporto, Portugal - http://paginas.fe.up.pt/~mbraga/the_group.html
Elements (2)
Name
|
Structure
|
Atomic
Number
|
Atomic
Weight
|
H298
|
S298
|
LI
|
BCC_A2
|
3
|
6.941
|
4623.3
|
29.095
|
SI
|
DIAMOND_A4
|
14
|
28.085
|
3217.5
|
18.82
|
Phases (10)
Name
|
Model
|
Type_Def
Code
|
Lattice
Size
|
Constituent
|
BCC_A2
|
CEF (SLN)
|
|
(1)(3)
|
(LI,SI)(VA)
|
DIAMOND_A4
|
CEF (SLN)
|
|
(1)
|
(LI,SI)
|
LI12SI7
|
CEF (ST2)
|
|
(0.6316)(0.3684)
|
(LI)(SI)
|
LI13SI4
|
CEF (ST2)
|
|
(0.7647)(0.2353)
|
(LI)(SI)
|
LI17SI4
|
CEF (ST2)
|
|
(0.8095)(0.1905)
|
(LI)(SI)
|
LI21SI5
|
CEF (ST2)
|
|
(0.80769)(0.19231)
|
(LI)(SI)
|
LI4_13SI
|
CEF (ST2)
|
|
(0.80488)(0.19512)
|
(LI)(SI)
|
LI7SI3
|
CEF (ST2)
|
|
(0.7)(0.3)
|
(LI)(SI)
|
LIQUID
|
CEF (SLN)
|
|
(1)
|
(LI,SI)
|
LISI
|
CEF (ST2)
|
|
(0.5)(0.5)
|
(LI)(SI)
|
Phase Parameters
Name
|
Property
|
x-Term
|
x-order
|
Parameter
|
T-limit
(K)
|
BCC_A2
|
L0
|
(LI)(VA)
|
0
|
+GHSERLI
|
6000
|
L0
|
(SI)(VA)
|
0
|
+30225.0-9.59*T+GHSERSI
|
6000
|
L
|
(LI,SI)(VA)
|
0
|
+0
|
6000
|
DIAMOND_A4
|
L0
|
(LI)
|
0
|
+26963.2+15.83*T+GHSERLI
|
6000
|
L0
|
(SI)
|
0
|
+GHSERSI
|
6000
|
L
|
(LI,SI)
|
0
|
+0
|
6000
|
LI12SI7
|
L0
|
(LI)(SI)
|
0
|
-24817+2.49*T
+0.6316*GHSERLI+0.3684*GHSERSI
|
6000
|
LI13SI4
|
L0
|
(LI)(SI)
|
0
|
-25207+4.15*T
+0.7647*GHSERLI+0.2353*GHSERSI
|
6000
|
LI17SI4
|
L0
|
(LI)(SI)
|
0
|
-22818+4.997*T
+0.8095*GHSERLI+0.1905*GHSERSI
|
6000
|
LI21SI5
|
L0
|
(LI)(SI)
|
0
|
-22683+4.608*T
+0.80769*GHSERLI+0.19231*GHSERSI
|
6000
|
LI4_13SI
|
L0
|
(LI)(SI)
|
0
|
-23045.5+4.79*T
+0.80488*GHSERLI+0.19512*GHSERSI
|
6000
|
LI7SI3
|
L0
|
(LI)(SI)
|
0
|
-26700+3.11*T
+0.700*GHSERLI+0.300*GHSERSI
|
6000
|
LIQUID
|
L0
|
(LI)
|
0
|
-7883.612+211.841861*T
-38.940488*T*LN(T)+.035466931*T**2 -1.9869816E-05*T**3+159994*T**(-1)
|
250
|
+12015.027-362.187078*T+61.6104424*T*LN(T)-.182426463*T**2
+6.3955671E-05*T**3-559968*T**(-1)
|
453.6
|
-6057.31+172.652183*T-31.2283718*T*LN(T)+.002633221*T**2
-4.38058E-07*T**3 -102387*T**(-1)
|
3000
|
L0
|
(SI)
|
0
|
+50696.4-30.0994*T
+2.09307E-21*T**7+GHSERSI
|
1687
|
+49828.2-29.5591*T+4.20369E+30*T**(-9)+GHSERSI
|
6000
|
L
|
(LI,SI)
|
0
|
-115035+23*T
|
6000
|
L
|
(LI,SI)
|
1
|
-55980+17*T
|
6000
|
L
|
(LI,SI)
|
2
|
+9764
|
6000
|
L
|
(LI,SI)
|
3
|
+35653
|
6000
|
LISI
|
L0
|
(LI)(SI)
|
0
|
-19789+2.1599*T
+0.5*GHSERLI+0.5*GHSERSI
|
6000
|
Functions
Name
|
Expression
|
T-limit
(K)
|
GBCCSI
|
+30225.0-9.59*T+GHSERSI
|
6000
|
GHSERLI
|
-10583.817+217.637482*T-38.940488*T*LN(T)
+.035466931*T**2-1.9869816E-05*T**3+159994*T**(-1)
|
453.6
|
-559579.123+10547.8799*T-1702.88865*T*LN(T)+2.25832944*T**2
-5.71066077E-04*T**3+33885874*T**(-1)
|
500
|
-9062.994+179.278285*T-31.2283718*T*LN(T)+.002633221*T**2
-4.38058E-07*T**3-102387*T**(-1)
|
3000
|
GHSERSI
|
-8162.609+137.236859*T-22.8317533*T*LN(T)
-1.912904E-3*T**2-0.003552E-6*T**3+176667*T**(-1)
|
1687
|
-9457.642+167.281367*T-27.196*T*LN(T)
-420.369E28*T**(-9)
|
3600
|
UN_ASS
|
0
|
300
|
http://www.gotrawama.eu/metallurgia/LiSi.htm
Li-Si Phase Diagram from the
Paper
Li-Si Phalse Diagram using only SGTE (pure metals) data
Possible Digression on
Alkali Metals: https://en.wikipedia.org/wiki/Alkali_metal
Possible readings: 1
Atoms and Atomic Arrangements http://web.b.ebscohost.com/ehost/ebookviewer/ebook/bmxlYmtfXzQ4NjI4NF9fQU41?sid=6ad42165-2929-43aa-9ba9-095878d321c1@sessionmgr112&vid=0&format=EB&lpid=lp_1&rid=0#
(Second Week) Lesson 4: Another Pandat Simulation of Li-Sn phase diagram.
http://www.gotrawama.eu/metallurgia/LiSn.htm
Elements (2)
Name
|
Structure
|
Atomic
Number
|
Atomic
Weight
|
H298
|
S298
|
LI
|
BCC_A2
|
3
|
6.941
|
4623.3
|
29.095
|
SN
|
BCT_A5
|
50
|
118.71
|
6322
|
51.195
|
Species (1)
Name
|
Formula
|
Charge
|
LI4SN
|
(LI)4(SN)1
|
0
|
Type
Definition (1)
Type
Code
|
Function
|
Phase
|
Property
|
Parameter
|
&
|
AMEND_PHASE_DESCRIPTION
|
BCC_A2
|
MAGNETIC
|
(-1) (0.4)
|
Phases (4)
Name
|
Model
|
Type_Def
Code
|
Lattice
Size
|
Constituent
|
BCC_A2
|
CEF (SLN)
|
&
|
(1)(3)
|
(LI,SN)(VA)
|
BCT_A5
|
CEF (ST1)
|
|
(1)
|
(SN)
|
DIAMOND_A4
|
CEF (ST1)
|
|
(1)
|
(SN)
|
LIQUID
|
CEF (SLN)
|
|
(1)
|
(LI,LI4SN,SN)
|
Phase Parameters
Name
|
Property
|
x-Term
|
x-order
|
Parameter
|
T-limit
(K)
|
BCC_A2
|
L0
|
(LI)(VA)
|
0
|
+GHSERLI
|
3000
|
L0
|
(SN)(VA)
|
0
|
+GBCCSN
|
3000
|
BCT_A5
|
L0
|
(SN)
|
0
|
+GHSERSN
|
3000
|
DIAMOND_A4
|
L0
|
(SN)
|
0
|
-9579.608+114.007785*T
-22.972*T*LN(T)-.00813975*T**2+2.7288E-06*T**3+25615*T**(-1)
|
298.15
|
-9063.001+104.84654*T-21.5750771*T*LN(T)-.008575282*T**2
+1.784447E-06*T**3-2544*T**(-1)
|
800
|
-10909.353+147.396537*T-28.4512*T*LN(T)
|
3000
|
LIQUID
|
L0
|
(LI)
|
0
|
+GLIQLI
|
3000
|
L0
|
(LI4SN)
|
0
|
-205264.343+187.457195*T
-16.7055876*T*LN(T)+4*GLIQLI+GLIQSN
|
3000
|
L0
|
(SN)
|
0
|
+GLIQSN
|
3000
|
L
|
(LI,SN)
|
0
|
-64124.4038-15.9626763*T
+2.04164413*T*LN(T)
|
3000
|
L
|
(LI,LI4SN)
|
0
|
30074.1641-19.0031351*T
-1.46094182*T*LN(T)
|
3000
|
L
|
(LI4SN,SN)
|
0
|
-24652.1452-259.57801*T
+28.4690441*T*LN(T)
|
3000
|
Functions
Name
|
Expression
|
T-limit
(K)
|
GBCCSN
|
+GHSERSN+4400-6*T
|
3000
|
GFCCLI
|
+GHSERLI-108+1.3*T
|
3000
|
GFCCSN
|
+GHSERSN+5510-8.46*T
|
3000
|
GHCPLI
|
+GHSERLI-154+2*T
|
3000
|
GHCPSN
|
+GHSERSN+3900-7.646*T
|
3000
|
GHSERLI
|
-10583.817+217.637482*T-38.940488*T*LN(T)
+.035466931*T**2-1.9869816E-05*T**3+159994*T**(-1)
|
453.6
|
-559579.123+10547.8799*T-1702.88865*T*LN(T)+2.25832944*T**2
-5.71066077E-04*T**3+33885874*T**(-1)
|
500
|
-9062.994+179.278285*T-31.2283718*T*LN(T)+.002633221*T**2
-4.38058E-07*T**3-102387*T**(-1)
|
3000
|
GHSERSN
|
-7958.517+122.765451*T-25.858*T*LN(T)
+5.1185E-04*T**2-3.192767E-06*T**3+18440*T**(-1)
|
250
|
-5855.135+65.443315*T-15.961*T*LN(T)-.0188702*T**2+3.121167E-06*T**3
-61960*T**(-1)
|
505.08
|
+2524.724+4.005269*T-8.2590486*T*LN(T)-.016814429*T**2
+2.623131E-06*T**3-1081244*T**(-1)-1.2307E+25*T**(-9)
|
800
|
-8256.959+138.99688*T-28.4512*T*LN(T)-1.2307E+25*T**(-9)
|
3000
|
GLIQLI
|
-7883.612+211.841861*T-38.940488*T*LN(T)
+.035466931*T**2-1.9869816E-05*T**3+159994*T**(-1)
|
250
|
+12015.027-362.187078*T+61.6104424*T*LN(T)-.182426463*T**2
+6.3955671E-05*T**3-559968*T**(-1)
|
453.6
|
-6057.31+172.652183*T-31.2283718*T*LN(T)+.002633221*T**2
-4.38058E-07*T**3-102387*T**(-1)
|
3000
|
GLIQSN
|
+GHSERSN+7103.092-14.087767*T
+1.47031E-18*T**7
|
505.08
|
+9496.31-9.809114*T-8.2590486*T*LN(T)-.016814429*T**2
+2.623131E-06*T**3-1081244*T**(-1)
|
800
|
-1285.372+125.182498*T-28.4512*T*LN(T)
|
3000
|
UN_ASS
|
0.0
|
300
|
Readings:The good old
school.. Phase Diagrams and alloy Theory
http://web.b.ebscohost.com/ehost/ebookviewer/ebook/bmxlYmtfXzQ4NjI4NF9fQU41?sid=6ad42165-2929-43aa-9ba9-095878d321c1@sessionmgr112&vid=0&format=EB&lpid=lp_1&rid=0#
Li-Sn Phase Diagram
Digression: Various
Activities of Prof. Sadoway at MIT Digression: Is This Ambri’s New Liquid-Metal Battery
Materials Formula?
https://www.greentechmedia.com/articles/read/is-this-ambris-new-liquid-metal-battery-materials-formula
http://sadoway.mit.edu/
Lesson 5: A more complicated
situation, a ternary phase diagram. The case of Cu Sn Zn.
http://www.sciencedirect.com/science/article/pii/S0925838808019816
Liquidus projection Cu-Sn-Zn
and Liquidus Surface
Lesson 6: It seems easier: the case of Sn-Zn, Cu-Zn phase diagrams
Readings: Chapter 5
Characterization and Analysis. Problems Chapter 5.
|
|
|
Lesson
7: The case of Cu-Sn. Copper alloys: brasses bronzes and much more
http://www.copperalliance.org.uk/docs/librariesprovider5/resources/pub-117---the-brasses_whole_web-pdf.pdf?sfvrsn=0
Lesson 8: More and more
difficult - the quaternary Al-Cu-Si-Mg and quinary Al-Cu-Si-Mg-Mn . Checking
the open data that we have.. with binaries and ternaries with the “professional” version
of Pandat (8.2)
http://www.sciencedirect.com/science/article/pii/S0040603110003990
Lesson 9: Al-Cu-Si ternary.
Aluminum alloys
http://www.sciencedirect.com/science/article/pii/S092583881101913X
Lesson 10: Physical
Properties Readings: Chapter 8 Problems Chapter 8
See
also:
http://link.springer.com/search?query=Gasior+Gancarz
Sb-Sn-Zn
Thermodynamic Database at:
http://is.muni.cz/th/270259/prif_m/SBSNZN_fin.tdb
Lesson
11 : Plastic Deformation and Dislocation Behaviour Reading: Chapter 9 Problems
Chapter 9
Additional Readings: Dieter
Mechanical Metallurgy
https://archive.org/stream/mechanicalmetall00diet#page/n5/mode/2up
https://archive.org/stream/mechanicalmetall00diet#page/n25/mode/2up
“.. for students of
engineering who have had an advanced course on strength of materials or machine
design, it probably will be possible to skim rapidly over these chapters..”
Readings: Learning Dieter
Dislocation Theory.. Not the easiest thing to do!!
https://archive.org/stream/mechanicalmetall00diet#page/158/mode/2up
Lesson 12 : Surfaces, Grain
Boundaries and Interfaces Reading: Chapter 10 Problems Chapter 10
Lesson 13 : Work hardening
and annealing : Chapter 11 Problems Chapter 11
Lesson 14 : Did we forget about something? Reading: Chapter 14 Selected Alloys
Problems Chapter 14
The textbook reports on
steels, cast irons, superalloys, titanium alloys, structural intermetallic
compounds, aluminium alloys, copper and copper alloys.. I would add magnesium
alloys.. the Science Direct (Elsevier)
journal of magnesium and alloys is open access!! http://www.sciencedirect.com/science/journal/22139567
Lesson 15: Phase Diagrams back! Fe-Cu-C, Fe-Cr-C, Fe-Cr-Ni phase diagrams. Yes,
there is also a Fe-C diagram..
Pandat Liquidus Surface
Fe-Cr-C
See also.. Madeleine
Durand-Charre. The Microstructure of Steels and Cast Irons https://www.academia.edu/7563031/MADELEINE_DURAND-CHARRE._THE_MICROSTRUCTURE_OF_STEELS_AND_CAST_IRONS
Lesson 16 : Continuation of
15 and .. A world of steel: WorldSteel site http://www.worldsteel.org
Steeluniversity http://www.steeluniversity.org
Lesson 17/18/ Steel transformations Chapter 12 Problems
Chapter 12
Lesson 19 : Scientific and Technical aspects of steels. The case of steels for
bearings
After.. Prof. H.D.K.
Bhadeshia, Cambridge ( and SKF University Technology Center for Steels http://www.msm.cam.ac.uk/phase-trans/2011/Bearings/)
And Ovako: http://www.ovako.com/Global/Downloads/Product_information/Ovako_Group/EN/Steels%20for%20Bearings%20from%20Ovako.pdf
Lesson 20: - ideas and
examples from Materials Science of Steel www.gotrawama.eu/Metallurgiaacciaio/
to develop final project
--
Prof. Fabio Miani
Univ. of Udine
Via delle Scienze 208
33100 Udine
Italy
tel
+390432558259fax
+39 0432 558302