[A Course in Metallurgy, Fabio Miani, University of Udine, Italy ]

 

 

Course description :

This Course on Metallurgy is basically a compromise between the good old school of teaching Metallurgy and new available (free for up to three components!)  software Pandat Software (http://www.computherm.com/ last release October 2014) for phase diagram calculations.

Course objectives

 The student  will be able to have a deeper understanding of the subject by learning to use a Calphad based software, Pandat.  Understanding of the subject will be obtained also by using  other general purpose software like Matlab or Maple) and by solving some the problems the textbook proposes.

Course organization

There will be less powerpoint slides projection as generally students would expect. Learning will be based mainly on  solving specific issues, and generalized/categorized afterwards. 

Materials

 It is necessary to have a computer (Windows based or otherwise installed by virtualization) to install Pandat.

Textbook is: Modern Physical Metallurgy, 8th edition, by Smallman and Ngan, Butterworth-Heinemann ( Elsevier) .

Additional information on Mechanical Metallurgy could be obtained by Dieter, Mechanical Metallurgy

Prerequisites and co-requisites

The student  should already possess some  elementary notions  of materials science and mechanical behaviour of metals  and, possibly,  metallurgy. In the case of a serious lack of this information expecially for the mechanical behaviour of metals, he/she should consider the materials in the first parts of the above mentioned Dieter textbook.

Course requirements

The student  will provide in due times assignements  ( by email to metallurgia16@gmail.com  )related to the use of Pandat and solutions to selected problems during the course. Partecipation is strongly recommended. Final exam is needed in case of uncorrect or untimely delivery of assignments and  problems. A specific final project will be proposed during the course.


 Evaluation and grading policy

The final grade  student will be based mainly ( 80%- even 90 %) on the involvement that the student has demonstrated by working out assignements and problems during the course. In case some recovery is needed from a mark considered low by the student, final project work  will be considered by professor up to 20%. 

Course policies and expectations

As laptop use is necessary, an intelligent and respectful use of contemporary devices is welcome.

Course calendar

Will be communicated ( by email) and published at www.gotrawama.eu/metallurgia/

Advice

Readings ( and suggested links ) should be approached briefly before classroom. Emphasis in not on memorization, but on the ability to solve (close to real world) problems


First week 

STEP 0 Purpose and aim of the course
 

Lesson 1: Overview of the Course - Learning needs discussion and evaluation.
 
Historical, Economic, and Social Perspectives of the metal related activities.

Review of Selected Global Mineral Industries in 2011 and an Outlook to 2017

http://www.gotrawama.eu/metallurgia/GlobalMineralIndustries.png

http://www.gotrawama.eu/metallurgia/globalmineralindustries.htm

Metal prices in the United States through 2010

http://www.gotrawama.eu/metallurgia/metal%20prices

http://www.gotrawama.eu/metallurgia/MetalPrices.png

Lesson 2: Metals and materials. What is a metal in a elementary perspective.


Mineral Facilities of Europe

http://www.gotrawama.eu/metallurgia/MineralFacilitiesEurope.png

http://pubs.usgs.gov/of/2010/1257/

Readings: Chapter 1: Process MetallurgyAn Argosy Through Time

http://web.a.ebscohost.com/ehost/ebookviewer/ebook/bmxlYmtfXzQ4NTE4MV9fQU41?sid=85dc640b-a9f0-4446-9329-ccdb298881be@sessionmgr4001&vid=0&format=EB&lpid=lp_15&rid=0

Metal extraction procedures from an elementary perspective.

Readings: Chapter 1.1: Introduction to Metallurgical Processing

http://web.a.ebscohost.com/ehost/ebookviewer/ebook/bmxlYmtfXzQ4NTE4MV9fQU41?sid=85dc640b-a9f0-4446-9329-ccdb298881be@sessionmgr4001&vid=0&format=EB&lpid=lp_15&rid=0#

Metal oxydes and metal recycling: a way to a greener production.


Lesson 3: Pandat software and metallurgical thermochemistry

http://www.gotrawama.eu/metallurgia/Pandat.png 

Using Pandat Basics: http://www.computherm.com/

Use of Pandat for the Li.Si phase diagram: paper from Maria Helena Braga, Oporto, Portugal - http://paginas.fe.up.pt/~mbraga/the_group.html

http://www.gotrawama.eu/metallurgia/LiSi.png

Elements (2)

Name

Structure

Atomic Number

Atomic Weight

H298

S298

LI

BCC_A2

3

6.941

4623.3

29.095

SI

DIAMOND_A4

14

28.085

3217.5

18.82



Phases (10)

Name

Model

Type_Def Code

Lattice Size

Constituent

BCC_A2

CEF (SLN)

 

(1)(3)

(LI,SI)(VA)

DIAMOND_A4

CEF (SLN)

 

(1)

(LI,SI)

LI12SI7

CEF (ST2)

 

(0.6316)(0.3684)

(LI)(SI)

LI13SI4

CEF (ST2)

 

(0.7647)(0.2353)

(LI)(SI)

LI17SI4

CEF (ST2)

 

(0.8095)(0.1905)

(LI)(SI)

LI21SI5

CEF (ST2)

 

(0.80769)(0.19231)

(LI)(SI)

LI4_13SI

CEF (ST2)

 

(0.80488)(0.19512)

(LI)(SI)

LI7SI3

CEF (ST2)

 

(0.7)(0.3)

(LI)(SI)

LIQUID

CEF (SLN)

 

(1)

(LI,SI)

LISI

CEF (ST2)

 

(0.5)(0.5)

(LI)(SI)




 

Phase Parameters

Name

Property

x-Term

x-order

Parameter

T-limit (K)

BCC_A2

L0

(LI)(VA)

0

+GHSERLI

6000

L0

(SI)(VA)

0

+30225.0-9.59*T+GHSERSI

6000

L

(LI,SI)(VA)

0

+0

6000

DIAMOND_A4

L0

(LI)

0

+26963.2+15.83*T+GHSERLI

6000

L0

(SI)

0

+GHSERSI

6000

L

(LI,SI)

0

+0

6000

LI12SI7

L0

(LI)(SI)

0

-24817+2.49*T +0.6316*GHSERLI+0.3684*GHSERSI

6000

LI13SI4

L0

(LI)(SI)

0

-25207+4.15*T +0.7647*GHSERLI+0.2353*GHSERSI

6000

LI17SI4

L0

(LI)(SI)

0

-22818+4.997*T +0.8095*GHSERLI+0.1905*GHSERSI

6000

LI21SI5

L0

(LI)(SI)

0

-22683+4.608*T +0.80769*GHSERLI+0.19231*GHSERSI

6000

LI4_13SI

L0

(LI)(SI)

0

-23045.5+4.79*T +0.80488*GHSERLI+0.19512*GHSERSI

6000

LI7SI3

L0

(LI)(SI)

0

-26700+3.11*T +0.700*GHSERLI+0.300*GHSERSI

6000

LIQUID

L0

(LI)

0

-7883.612+211.841861*T -38.940488*T*LN(T)+.035466931*T**2 -1.9869816E-05*T**3+159994*T**(-1)

250

+12015.027-362.187078*T+61.6104424*T*LN(T)-.182426463*T**2 +6.3955671E-05*T**3-559968*T**(-1)

453.6

-6057.31+172.652183*T-31.2283718*T*LN(T)+.002633221*T**2 -4.38058E-07*T**3 -102387*T**(-1)

3000

L0

(SI)

0

+50696.4-30.0994*T +2.09307E-21*T**7+GHSERSI

1687

+49828.2-29.5591*T+4.20369E+30*T**(-9)+GHSERSI

6000

L

(LI,SI)

0

-115035+23*T

6000

L

(LI,SI)

1

-55980+17*T

6000

L

(LI,SI)

2

+9764

6000

L

(LI,SI)

3

+35653

6000

LISI

L0

(LI)(SI)

0

-19789+2.1599*T +0.5*GHSERLI+0.5*GHSERSI

6000




 

Functions

Name

Expression

T-limit (K)

GBCCSI

+30225.0-9.59*T+GHSERSI

6000

GHSERLI

-10583.817+217.637482*T-38.940488*T*LN(T) +.035466931*T**2-1.9869816E-05*T**3+159994*T**(-1)

453.6

-559579.123+10547.8799*T-1702.88865*T*LN(T)+2.25832944*T**2 -5.71066077E-04*T**3+33885874*T**(-1)

500

-9062.994+179.278285*T-31.2283718*T*LN(T)+.002633221*T**2 -4.38058E-07*T**3-102387*T**(-1)

3000

GHSERSI

-8162.609+137.236859*T-22.8317533*T*LN(T) -1.912904E-3*T**2-0.003552E-6*T**3+176667*T**(-1)

1687

-9457.642+167.281367*T-27.196*T*LN(T) -420.369E28*T**(-9)

3600

UN_ASS

0

300

http://www.gotrawama.eu/metallurgia/LiSi.htm

http://www.gotrawama.eu/metallurgia/LiSiPhase.png

Li-Si Phase Diagram from the Paper

http://www.gotrawama.eu/metallurgia/LiSiPhalse.png

Li-Si Phalse Diagram using only SGTE (pure metals) data

Possible Digression on Alkali Metals: https://en.wikipedia.org/wiki/Alkali_metal

Possible readings: 1 Atoms and Atomic Arrangements http://web.b.ebscohost.com/ehost/ebookviewer/ebook/bmxlYmtfXzQ4NjI4NF9fQU41?sid=6ad42165-2929-43aa-9ba9-095878d321c1@sessionmgr112&vid=0&format=EB&lpid=lp_1&rid=0#


(Second Week) Lesson 4: Another Pandat Simulation of Li-Sn phase diagram.

http://www.gotrawama.eu/metallurgia/LiSn.htm

Elements (2)

Name

Structure

Atomic Number

Atomic Weight

H298

S298

LI

BCC_A2

3

6.941

4623.3

29.095

SN

BCT_A5

50

118.71

6322

51.195

 

Species (1)

Name

Formula

Charge

LI4SN

(LI)4(SN)1

0


Type Definition (1)

Type Code

Function

Phase

Property

Parameter

&

AMEND_PHASE_DESCRIPTION

BCC_A2

MAGNETIC

(-1) (0.4)  



Phases (4)

Name

Model

Type_Def Code

Lattice Size

Constituent

BCC_A2

CEF (SLN)

&

(1)(3)

(LI,SN)(VA)

BCT_A5

CEF (ST1)

 

(1)

(SN)

DIAMOND_A4

CEF (ST1)

 

(1)

(SN)

LIQUID

CEF (SLN)

 

(1)

(LI,LI4SN,SN)



 

 

Phase Parameters

Name

Property

x-Term

x-order

Parameter

T-limit (K)

BCC_A2

L0

(LI)(VA)

0

+GHSERLI

3000

L0

(SN)(VA)

0

+GBCCSN

3000

BCT_A5

L0

(SN)

0

+GHSERSN

3000

DIAMOND_A4

L0

(SN)

0

-9579.608+114.007785*T -22.972*T*LN(T)-.00813975*T**2+2.7288E-06*T**3+25615*T**(-1)

298.15

-9063.001+104.84654*T-21.5750771*T*LN(T)-.008575282*T**2 +1.784447E-06*T**3-2544*T**(-1)

800

-10909.353+147.396537*T-28.4512*T*LN(T)

3000

LIQUID

L0

(LI)

0

+GLIQLI

3000

L0

(LI4SN)

0

-205264.343+187.457195*T -16.7055876*T*LN(T)+4*GLIQLI+GLIQSN

3000

L0

(SN)

0

+GLIQSN

3000

L

(LI,SN)

0

-64124.4038-15.9626763*T +2.04164413*T*LN(T)

3000

L

(LI,LI4SN)

0

30074.1641-19.0031351*T -1.46094182*T*LN(T)

3000

L

(LI4SN,SN)

0

-24652.1452-259.57801*T +28.4690441*T*LN(T)

3000



 

 

Functions

Name

Expression

T-limit (K)

GBCCSN

+GHSERSN+4400-6*T

3000

GFCCLI

+GHSERLI-108+1.3*T

3000

GFCCSN

+GHSERSN+5510-8.46*T

3000

GHCPLI

+GHSERLI-154+2*T

3000

GHCPSN

+GHSERSN+3900-7.646*T

3000

GHSERLI

-10583.817+217.637482*T-38.940488*T*LN(T) +.035466931*T**2-1.9869816E-05*T**3+159994*T**(-1)

453.6

-559579.123+10547.8799*T-1702.88865*T*LN(T)+2.25832944*T**2 -5.71066077E-04*T**3+33885874*T**(-1)

500

-9062.994+179.278285*T-31.2283718*T*LN(T)+.002633221*T**2 -4.38058E-07*T**3-102387*T**(-1)

3000

GHSERSN

-7958.517+122.765451*T-25.858*T*LN(T) +5.1185E-04*T**2-3.192767E-06*T**3+18440*T**(-1)

250

-5855.135+65.443315*T-15.961*T*LN(T)-.0188702*T**2+3.121167E-06*T**3 -61960*T**(-1)

505.08

+2524.724+4.005269*T-8.2590486*T*LN(T)-.016814429*T**2 +2.623131E-06*T**3-1081244*T**(-1)-1.2307E+25*T**(-9)

800

-8256.959+138.99688*T-28.4512*T*LN(T)-1.2307E+25*T**(-9)

3000

GLIQLI

-7883.612+211.841861*T-38.940488*T*LN(T) +.035466931*T**2-1.9869816E-05*T**3+159994*T**(-1)

250

+12015.027-362.187078*T+61.6104424*T*LN(T)-.182426463*T**2 +6.3955671E-05*T**3-559968*T**(-1)

453.6

-6057.31+172.652183*T-31.2283718*T*LN(T)+.002633221*T**2 -4.38058E-07*T**3-102387*T**(-1)

3000

GLIQSN

+GHSERSN+7103.092-14.087767*T +1.47031E-18*T**7

505.08

+9496.31-9.809114*T-8.2590486*T*LN(T)-.016814429*T**2 +2.623131E-06*T**3-1081244*T**(-1)

800

-1285.372+125.182498*T-28.4512*T*LN(T)

3000

UN_ASS

0.0

300

http://www.gotrawama.eu/metallurgia/LiSn.png


 

Readings:The good old school.. Phase Diagrams and alloy Theory

http://web.b.ebscohost.com/ehost/ebookviewer/ebook/bmxlYmtfXzQ4NjI4NF9fQU41?sid=6ad42165-2929-43aa-9ba9-095878d321c1@sessionmgr112&vid=0&format=EB&lpid=lp_1&rid=0#


http://www.gotrawama.eu/metallurgia/LiSn.png

Li-Sn Phase Diagram

Digression: Various Activities of Prof. Sadoway at MIT Digression: Is This Ambris New Liquid-Metal Battery Materials Formula?http://www.gotrawama.eu/metallurgia/Sadoway.png

https://www.greentechmedia.com/articles/read/is-this-ambris-new-liquid-metal-battery-materials-formula

http://www.gotrawama.eu/metallurgia/Ambri.png

http://sadoway.mit.edu/


 

Lesson 5: A more complicated situation, a ternary phase diagram. The case of Cu Sn Zn.

http://www.sciencedirect.com/science/article/pii/S0925838808019816

Liquidus projection Cu-Sn-Zn

and Liquidus Surface


Lesson 6: It seems easier: the case of Sn-Zn, Cu-Zn phase diagrams

 

 

 

 

Readings: Chapter 5 Characterization and Analysis. Problems Chapter 5.


Lesson 7: The case of Cu-Sn. Copper alloys: brasses bronzes and much more

http://www.copperalliance.org.uk/docs/librariesprovider5/resources/pub-117---the-brasses_whole_web-pdf.pdf?sfvrsn=0

Lesson 8: More and more difficult - the quaternary Al-Cu-Si-Mg and quinary Al-Cu-Si-Mg-Mn . Checking the open data that we have.. with binaries  and ternaries with the “professional” version of Pandat (8.2)

http://www.sciencedirect.com/science/article/pii/S0040603110003990

 

 

 

Lesson 9: Al-Cu-Si ternary. Aluminum alloys

http://www.sciencedirect.com/science/article/pii/S092583881101913X

Lesson 10: Physical Properties Readings: Chapter 8 Problems Chapter 8

 

Work of Gancarz based on Henein-Roach viscosimeter

 

 


Lesson 11 : Plastic Deformation and Dislocation Behaviour Reading: Chapter 9 Problems Chapter 9

Additional Readings: Dieter Mechanical Metallurgy

https://archive.org/stream/mechanicalmetall00diet#page/n5/mode/2up

https://archive.org/stream/mechanicalmetall00diet#page/n25/mode/2up

“.. for students of engineering who have had an advanced course on strength of materials or machine design, it probably will be possible to skim rapidly over these chapters..”


Readings: Learning Dieter Dislocation Theory.. Not the easiest thing to do!!

 

https://archive.org/stream/mechanicalmetall00diet#page/158/mode/2up

Lesson 12 : Surfaces, Grain Boundaries and Interfaces Reading: Chapter 10 Problems Chapter 10

 

Lesson 13 : Work hardening and annealing : Chapter 11 Problems Chapter 11


Lesson 14 : Did we forget about something? Reading: Chapter 14 Selected Alloys Problems Chapter 14

The textbook reports on steels, cast irons, superalloys, titanium alloys, structural intermetallic compounds, aluminium alloys, copper and copper alloys.. I would add magnesium alloys..  the Science Direct (Elsevier) journal of magnesium and alloys is open access!!  http://www.sciencedirect.com/science/journal/22139567

The textbook reports on steels, cast irons,superalloys, titanium alloys, copper and copper alloys.. I would add magnesium alloys..

The Science Direct (Elsevier) journal of magnesium and alloys is open access!!

Technical and Commercial Information on Copper and Copper Alloys


Lesson 15: Phase Diagrams back! Fe-Cu-C, Fe-Cr-C, Fe-Cr-Ni phase diagrams. Yes, there is also a Fe-C diagram..

Pandat Liquidus Surface Fe-Cr-C

 

 

 

 

 

 

 

 

 

 

 

See also.. Madeleine Durand-Charre. The Microstructure of Steels and Cast Irons https://www.academia.edu/7563031/MADELEINE_DURAND-CHARRE._THE_MICROSTRUCTURE_OF_STEELS_AND_CAST_IRONS

 


Lesson 16 : Continuation of 15 and .. A world of steel: WorldSteel site http://www.worldsteel.org Steeluniversity http://www.steeluniversity.org


Lesson 17/18/  Steel transformations Chapter 12 Problems Chapter 12


Lesson 19 : Scientific and Technical aspects of steels. The case of steels for bearings

After.. Prof. H.D.K. Bhadeshia, Cambridge ( and SKF University Technology Center for Steels http://www.msm.cam.ac.uk/phase-trans/2011/Bearings/)

And Ovako: http://www.ovako.com/Global/Downloads/Product_information/Ovako_Group/EN/Steels%20for%20Bearings%20from%20Ovako.pdf

 

 

Lesson 20: - ideas and examples from Materials Science of Steel www.gotrawama.eu/Metallurgiaacciaio/ to develop final project